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Summary

We solve a class of difference equations and desire some
combinatorial identities arising from "returns to equilibrium"
in coin tossing problems. We shall use the results and the
notations introduced by the -senior author in three previous '
papers which are referred to in vi'hat follows as (1), (2) and (3).

1. Difference Equations Related to Partition of an Integer

Consider sequences of trials made with a coin, limiting ourselves
to those sequences Si, {N = \, 2, ...) which satisfy the two following
conditions:—

(i) A sequence Sj, consists of 2N trials and the total number of
heads and tails obtained in this sequence is equal, being N each.

(ii) If the number of heads and tails obtained in this sequence
Sf, wer^ equal at the (2/c)-th tiial, A: = 0, 1, ..., iV —1, the (2/c + l)-st
trial of Si, is always a tail.

We represent a tail by ' 6»' and a head by ' X' in what follows.
For N=\, we consider thus the single sequence ' 0X\ For each
sequence we are interested in the three variables N, n, r, where N is
the total number of tails (O's) in the sequence, n represents the number
of heads in the run of A"s at the end of the sequence and r represents
the total number of changes from tail {O) to head (X) in the sequence.

For example, the sequence ' OOXOOXXX' which satisfies (i) and
(ii) will correspond to N = 4, n = 3, r = 2.

It is easy to see that given all the sequences Si,^ for some value of
N = say, we obtain without repetition or omission all the sequences
Sjvi+i by placing a 0 either before any of the X'j in the run ofX's at
the end of a sequence or after the last X of a sequence and adding
an X at the end. Let this procedure be called (P).

For example, 'OX' gives by {P)

0 O XX
O X O X
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which represent the two possible sequences 82-

Let {N, n, r) be the number of such sequences, possible for given
values of N, n, and r. Evidently, (1, 1, 1) = 1 and wecould obtain,
by recursion,' using (P), the values of {N, n; r) for all N, n, r. ' For
one of N, n, r non-integral or zero or negative (N, n, r) = 0.

If

A^<7j + r-l, iN,it,r) = 0.

Finally we have the. difference equation obtained from (P),

{N, n, r) = {N-\, n-l\ r) + {N-l, r,, r-l).
l]=n

2. Difference Equations Connected with ^-Dominations

It is seen easily [cf. (2)] that a sequence which contains r changes
of sign corresponds to a " domination " of an /--partition of N by ano
ther and conversely. Thus, the procedure (P) gives us a constructive
method for obtaining all the dominations [in the sense of (2)] amongst
the partitions of an integer iV+ 1 given all the dominations amongst
the partitions of N. We shall obtain a similar difference equation cor
responding to the A:-dominations [cf. (3)] of the partitions of the pair
of integers (1, A: + 1); (2,/c + 2);. .. etc. Consider the sequence:
O XX X {k + 1 Z's), consisting of a 0 followed by {k -f 1)
A"s. We shall not for the moment, think of the O's and X's as heads
and tails. This represents a ^-domination of the 1-partition of /c + 1
by the 1-partition, of 1. Applying (P) to this set-up we get {k + 2)-
sequences;

O O XX ... XX (/c+2 Z's); 0X0 XX ... XX (/c+I Z's);

O XXOXX . , XX{kX's)-, •

OXX ... XOXX(kX's);OXX ...XOX .

• (k+ I X's).

The first sequence represents the /c-domination of the 1-partition,
of {k + 2) by the 1-partition of 2 and the remaining k + 1 sequences
represent all the possible /c-dominations of the 2-partitions of /c + 2
by the 2-partitions of 2, viz., 1, 1. It is easily verified and was proved
implicitly in (2), (3) by a geometrical interpretation that (P) applied
to the above sequences, will yield all possible ^-dominations of the
partitions of /c + 3 by those of 3. The procedure (P) could obtain
by recursion all /c-dominations of the partitions of « + /c by those of
n, for all integral n. Section 1 corresponded to the case k = 0. The
general difference equation for A:-dominations using (P) is
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iv—ir+fc+a

{N.,n,rf = {N~\,n~\,rf+ S {N~\,'q, r-\f, (1)
3j=l

where (N, n, r)" is defined analogously to (N, n, r). We note {N, n, rf
= 0, N < n + r - k -

3. Lemma

The solution of the difference equation (1) is given by

{N,«, 1) = if ",;7 ^
(0 otherwise

{N, n, /•)''= (iV-l)(.-i, {N+k~n~l)^r-,y_

—{N+k—l)f,-2) (N—n—l)(r-i)

(2)

Proof.—Let us define, using a notation similar to (3), Section 4 (b),
the function (a, b; 1)^" which represents the number of /c-dominations
of those r-partitions of b which have their rth partition value equal to
t exactly {i.e., /--partitions of a.

It is evident from the geometrical interpretation or otherwise that
{a, b; 0^+1 = (a-1, b—t)r^-^{a-2, b-i),^+.. .+{b—t-k, b—t),".

By an induction on r, we can prove the result

{a, b; Or" = (a - l)(r-i) {b - t - l),,-^)

- (a + ^-1)(,_2, (6-A:-l-0(,-i) (3)
for all given a,' b, k, and t.

Setting'a = N, b = N + k, t = n in (3), we. have the value of
(N, n, ry° as shown above.

From (2), we have the results:

N+k

f2N + k~2-n\ ...

S (N, n, rf = (iV, Z„, rf = {N+k-\\,-.^^

~ {N+ k —1)(,_2) {N—l)(r), (5)

(6)iN 2 H)'' = ^ ^ —I'N^ ' •" N+ k+I \ N-I )'
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and for all N, k

k + 2 (IN
{N, l,S,f =

N +k

= {N-\,S,,E,)K (7)

4. Relation to the Game:

Consider the game (k > 0) [cf. (1)]. The first few sequences
of gj.+2 corresponding to the case of no O's and of exactly 1 0 are;

XX XX {k + 2 rs)

0 XX XXX (/c + 3 X's)

XOXX ... XX (/c + 2Z's)

XXOXX ... XX (k+lX's)

XX ... XXOXX (/c+lZ's).

It will be noticed that a procedure very similar to (P) can be used to
generate recursively the sequences of g^^. For any sequence of g^+i,
let

N' = (number of zeros in the sequence) + L
n' = (number of X's in the block terminating the sequence)

-1,

,•' = /+!, where I represents the number of XO's in the
sequence.

If {N', n', r'f represents the number of sequences in ^^+2 for given
values of N', n', r' then (JV', n', r'f satisfies the same difference equation
(1). It has the same solution.

It was proved [cf. (1)] that thegames g^+a are equivalent to the
" probleme du scrutin " or returns to equilibrium in coin tossing. The
results (4), (5), (6) and (7) can be used to obtain more information about
the g-games or the probleme du scrutin, paying due attention to the
slight differences in the definition of N, n, y and N', n', r'.

5. Relation to the Game {k > 0) [cf. (3)]

We remark finally that every sequence of g^+a can be rearranged
into a sequence of and conversely. In fact, the two games are
identical as sequences, except that the probabilities are more complicated
in the case of G„+2.

Consider a sequence of G^+a containing 2m + k + 2 observations.
{i.e., mO's and m+ + 2 X's) belonging to the series S„. The base

(IN + /c - 3\
V N-2 ) = {N,2,Srf
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sequences of are of length k +, 2u + 2t {t = 1, 2,... ., u + 1)
and the number of base sequences of S„ of length k + 2u + 2ris by
Theorem 2, [cf. (3)]

W((-i) {k + u - l)((-i) - (k + u ~ i)(i-2, U(t).

As every sequence of Ofc+jj is generated from a base sequence [cf. (3)],
the total number of sequences of G,.+2 in series having 2m k 2
observations is the number of ways of putting m — u + I — t balls

in /c + 2m + 1 boxes (r = 1, 2, ..., w + 1) of a corresponding base
sequence of length k 2u + 2t {t = 1,2, ..u + 1). Hence the
total number of sequences in S,, having 2m + /c + 2 observations
is

/m +/c + M+ 1 — A , _

£ V 2u + k ) - 1)"-!'
— (/c + M— l)«-2) W(()}.

However, the number of g,,+2 sequences with m O's and I XO's in
it, is from Section 4 (note definitions of N', n', r')

S„, = m^i) (m+/:)(j)—(m+/c)(j_i)

But every sequence can be deformed into a sequence and con
versely. In changing a sequence of 2/n + /c + 2 observations
containing I ZO's exactly into a sequence, we note that of the m-
0's in gi,+2, Zwill fall on the bottom line [or / O's are obtained with
coin 2 c/. (1) (3)]. Hence this gs+a sequence of 2m + k + 2 observa
tions containing exactly I ZO's when transformed into a sequence
will belong to S^-i. Setting m — I = u or I = m — u,

(m + 1, i:„, m — u + If = m(„, (m + /:)(„+„>

— (m + /t)(jt+«+i)

represents the number of gs+2-series, falling in when transformed to
a Gi+a'Series. Equating these two for the number of G^+a-series having
2m + /c + 2 observations in S,„ we have the identity,

773(i) (m + - (m + /c)(;t+„+i, 772(„_1,

"p- fm + k + u + I — t\ f ,, . ,,
\ 2u +k ) {"('-D (^ +"- 1Vl)

— (/c+M—1)((_2) M(()} for /c > 0, M> 1 and m > 1.
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The case /c = 0 is of special interest. With a change of notation,
we have the identity,

= i ('Ci 'Co + 'C, 'Ci + ...

This identity explains why in the game Gj, the table of basic pat
terns for K = 1, 2, 3, ..is identical with the table of Ga-sequences,
falling in series So, iSi, S'g, These tables were prepared by the
junior author at the Indian Council of Agricultural Research.
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